翻訳と辞書
Words near each other
・ Schola Antiqua of New York
・ Schola Antiqua, Madrid
・ Schoenefeldia
・ Schoenenbourg (grand cru)
・ Schoenersville, Pennsylvania
・ Schoenerupa
・ Schoeneus
・ Schoenfeld
・ Schoenfeld, Saskatchewan
・ Schoenfelder
・ Schoenfelderpeton
・ Schoenfels
・ Schoenfels Castle
・ Schoenfield
・ Schoenflies displacement
Schoenflies notation
・ Schoenflies problem
・ Schoenherr
・ Schoenherr (law firm)
・ Schoenherr Road
・ Schoenhof
・ Schoenhof's Foreign Books
・ Schoenhofen Brewery Historic District
・ Schoenhofen Pyramid Mausoleum
・ Schoenia
・ Schoenicola
・ Schoening Peak
・ Schoenionta
・ Schoenmaker
・ Schoenobiinae


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schoenflies notation : ウィキペディア英語版
Schoenflies notation
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is one of two conventions commonly used to describe point groups. This notation is used in spectroscopy. The other convention is the Hermann–Mauguin notation, also known as the International notation. A point group in the Schoenflies convention is completely adequate to describe the symmetry of a molecule; this is sufficient for spectroscopy. The Hermann–Mauguin notation is able to describe the space group of a crystal lattice, while the Schoenflies notation isn't. Thus the Hermann–Mauguin notation is used in crystallography.
==Symmetry elements==
Symmetry elements are denoted by i for centers of inversion, C for proper rotation axes, σ for mirror planes, and S for improper rotation axes (rotation-reflection axes). C and S are usually followed by a subscript number (abstractly denoted n) denoting the order of rotation possible.
By convention, the axis of proper rotation of greatest order is defined as the principal axis. All other symmetry elements are described in relation to it. A vertical mirror plane (containing the principal axis) is denoted σv; a horizontal mirror plane (perpendicular to the principal axis) is denoted σh.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schoenflies notation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.